Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1-Dibenzyl-3-(3-chlorobenzoyl)thiourea

Mohd Faizal Md Nasir,^a Ibrahim N. Hassan,^a Bohari M. Yamin,^b W. R. W Daud^{c,a} and Mohammad B. Kassim^{b,a*}

^aFuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, ^bSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia, and ^cDepartment of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia Correspondence e-mail: mbkassim@ukm.mv

Received 11 June 2011; accepted 14 June 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.147; data-to-parameter ratio = 20.5.

In the title compound, C₂₂H₁₉ClN₂OS, the thiono and carbonyl groups are *trans* positioned with respect to a partially double C-N bond. The amide group is twisted relative to the thiourea fragment, forming a dihedral angle of 46.75 $(11)^{\circ}$. In the crystal, intermolecular $N-H\cdots S$ and $C-H\cdots O$ hydrogen bonds link the molecules into a one-dimensional polymeric structure parallel to the c axis.

Related literature

For related structures and background references, see: Alabbasi & Kassim (2011); Nasir et al. (2011). For metal complexes of benzoylthioureas, see: Weiqun et al. (2005); Circu et al. (2009). For the synthetic procedure, see: Hassan et al. (2008).

Experimental

Crystal data

C22H19ClN2OS	$\gamma = 69.463 \ (8)^{\circ}$
$M_r = 394.90$	V = 999.1 (7) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 9.503 (4) Å	Mo $K\alpha$ radiation
b = 9.650 (4) Å	$\mu = 0.31 \text{ mm}^{-1}$
c = 12.487 (5) Å	$T = 298 { m K}$
$\alpha = 72.422 \ (8)^{\circ}$	$0.28 \times 0.17 \times 0.13 \text{ mm}$
$\beta = 72.869 \ (9)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2000) $T_{\min} = 0.918, T_{\max} = 0.961$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	244 parameters
$vR(F^2) = 0.147$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
000 reflections	$\Delta \rho_{\min} = -0.31 \text{ e } \text{\AA}^{-3}$
000 reliections	$\Delta \rho_{\rm min} = -0.51 \ \text{e A}$

13666 measured reflections

 $R_{\rm int} = 0.036$

5000 independent reflections

2879 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdot \cdot \cdot S1^{i}$	0.86	2.74	3.410 (2)	136
$C15 - H15 \cdots O1^{m}$	0.93	2.50	3.421 (3)	170

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors thank Universiti Kebangsaan Malaysia for grants UKM-GUP-BTT-07-30-190 and UKM-OUP-TK-16-73/2010 and sabbatical leave for MBK. They also thank the Kementerian Pengajian Tinggi, Malaysia, for the research fund No. UKM-ST-06-FRGS0111-2009.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2383).

References

- Al-abbasi, A. A. & Kassim, M. B. (2011). Acta Cryst. E67, o611.
- Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Circu, V., Ilie, M., Ilis, M., Dumitrascu, F., Neagoe, I. & Pasculescu, S. (2009). Polyhedron, 28, 3739-3746.
- Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008). Acta Cryst. E64, o1727. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Nasir, M. F. M., Hassan, I. N., Wan Daud, W. R., Yamin, B. M. & Kassim, M. B. (2011). Acta Cryst. E67, o1218.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Weiqun, Z., Wen, Y., Liqun, X. & Xianchen, C. (2005). J. Inorg. Biochem. 99, 1314-1319.

Acta Cryst. (2011). E67, o1742 [doi:10.1107/S1600536811023191]

1,1-Dibenzyl-3-(3-chlorobenzoyl)thiourea

M. F. Md Nasir, I. N. Hassan, B. M. Yamin, W. R. W. Daud and M. B. Kassim

Comment

Benzoylthiourea compounds contain strong donor groups (carbonyl and thioamide) which make them very attractive ligands in coordination chemistry. These ligands react with transition metals, mostly in monoanionic and bidentate form by deprotonation of the amide group, forming neutral complexes with S, O-coordination (Weiqun *et al.*, 2005; Circu *et al.*, 2009).

The title compound, I, is a thiourea derivative analogous to our previously reported compounds (Nasir *et al.*, 2011; Al-abbasi & Kassim, 2011). The thiono S and the carbonyl O atoms are *trans* positioned at a partially double N1-C8 bond with C7N1C8S1 torsion angle of 127.37 (18)°. The dihedral angle between the mean planes of the thiourea (S1/N1/N2/C8) and the amide group (O1/N1/C1/C7) is 46.75 (11)°. The mean planes of the dibenzylamine (C9/C10/C11/C12/C13/C14/C15 and C16/C17/C18/C19/C19/C20/C21) make an angle of 20.54 (13)°.

Intermolecular N—H···S and C—H···O hydrogen bonds link the molecules into a one dimensional polymeric structure parallel to the *c*-axis.

Experimental

The title compound was prepared according to a previously reported compound (Hassan *et al.*, 2008). A colourless crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from a mixture of acetone/ethanol solution at room temperature (yield 80%).

Refinement

All H atoms were postioned geometrically with C-H bond lengths in the range 0.93 - 0.97 Å and N-H bond of 0.86 Å, and refined in the riding model approximation with $U_{iso}(H)=1.2U_{eq}(C,N)$, except for methyl group where $U_{iso}(H)=1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. A packing diagram of the title compound down the *a*-axis showing the intermolecular hydrogen bonds N1—H1…S1 (-x + 2, -y + 1, -z + 1) and C15—H15… O1 (-x + 2, -y + 1, -z).

1,1-Dibenzyl-3-(3-chlorobenzoyl)thiourea

Crystal	data
---------	------

C ₂₂ H ₁₉ ClN ₂ OS	Z = 2
$M_r = 394.90$	F(000) = 412
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.313 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Melting point: 409.15 K
a = 9.503 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.650 (4) Å	Cell parameters from 1114 reflections
c = 12.487 (5) Å	$\theta = 2.3 - 28.5^{\circ}$
$\alpha = 72.422 \ (8)^{\circ}$	$\mu = 0.31 \text{ mm}^{-1}$
$\beta = 72.869 \ (9)^{\circ}$	T = 298 K
$\gamma = 69.463 \ (8)^{\circ}$	Block, colourless
V = 999.1 (7) Å ³	$0.28\times0.17\times0.13~mm$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	5000 independent reflections
Radiation source: fine-focus sealed tube	2879 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.036$
ω scans	$\theta_{\text{max}} = 28.5^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000)	$h = -12 \rightarrow 12$
$T_{\min} = 0.918, T_{\max} = 0.961$	$k = -12 \rightarrow 12$
13666 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.147$ S = 1.03 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0679P)^2 + 0.0522P]$

	where $P = (F_0^2 + 2F_c^2)/3$
5000 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
244 parameters	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.89445 (7)	0.70137 (6)	0.39746 (5)	0.0651 (2)
Cl1	1.24059 (9)	-0.15952 (8)	0.53858 (7)	0.0984 (3)
01	1.15882 (17)	0.42880 (17)	0.15716 (13)	0.0614 (4)
N1	1.01426 (17)	0.43643 (17)	0.33839 (14)	0.0475 (4)
H1	0.9940	0.3826	0.4067	0.057*
N2	0.86120 (18)	0.62690 (17)	0.21995 (14)	0.0474 (4)
C8	0.9214 (2)	0.5863 (2)	0.31191 (17)	0.0454 (5)
C1	1.2465 (2)	0.2283 (2)	0.30830 (18)	0.0476 (5)
C7	1.1378 (2)	0.3712 (2)	0.25868 (19)	0.0482 (5)
C6	1.1962 (2)	0.1167 (2)	0.39517 (18)	0.0517 (5)
H6	1.0920	0.1315	0.4278	0.062*
C10	0.6590 (2)	0.5487 (2)	0.19232 (18)	0.0502 (5)
C9	0.8302 (2)	0.5205 (2)	0.1730 (2)	0.0541 (5)
H9A	0.8767	0.4170	0.2104	0.065*
H9B	0.8751	0.5338	0.0914	0.065*
C16	0.7941 (2)	0.7885 (2)	0.17143 (19)	0.0542 (5)
H16A	0.8138	0.8494	0.2115	0.065*
H16B	0.6835	0.8095	0.1842	0.065*
C17	0.8578 (3)	0.8343 (2)	0.04457 (19)	0.0569 (6)
C5	1.3029 (3)	-0.0172 (2)	0.43277 (19)	0.0607 (6)
C15	0.5883 (3)	0.5901 (3)	0.1013 (2)	0.0658 (6)
H15	0.6472	0.5954	0.0269	0.079*
C4	1.4577 (3)	-0.0385 (3)	0.3883 (2)	0.0708 (7)
H4	1.5287	-0.1283	0.4150	0.085*
C2	1.4025 (2)	0.2061 (2)	0.2627 (2)	0.0633 (6)
H2	1.4370	0.2804	0.2039	0.076*
C3	1.5060 (3)	0.0740 (3)	0.3045 (2)	0.0751 (8)
H3	1.6107	0.0609	0.2752	0.090*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C22	1.0129 (3)	0.7936 (3)	-0.0005 (2)	0.0719 (7)
H22	1.0805	0.7298	0.0466	0.086*
C11	0.5686 (3)	0.5384 (3)	0.3020 (2)	0.0741 (7)
H11	0.6143	0.5088	0.3649	0.089*
C18	0.7596 (4)	0.9279 (3)	-0.0270 (2)	0.0797 (8)
H18	0.6540	0.9551	0.0021	0.096*
C14	0.4304 (3)	0.6240 (3)	0.1196 (3)	0.0860 (8)
H14	0.3838	0.6519	0.0573	0.103*
C21	1.0691 (4)	0.8466 (4)	-0.1150 (3)	0.0994 (11)
H21	1.1744	0.8176	-0.1449	0.119*
C19	0.8167 (6)	0.9815 (4)	-0.1415 (3)	0.1121 (13)
H19	0.7500	1.0453	-0.1893	0.135*
C20	0.9722 (7)	0.9406 (4)	-0.1848 (3)	0.1165 (15)
H20	1.0111	0.9774	-0.2619	0.140*
C12	0.4102 (4)	0.5717 (4)	0.3194 (3)	0.0922 (9)
H12	0.3504	0.5633	0.3936	0.111*
C13	0.3428 (3)	0.6166 (3)	0.2279 (4)	0.0907 (10)
H13	0.2364	0.6424	0.2393	0.109*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0793 (4)	0.0510(3)	0.0616 (4)	0.0073 (3)	-0.0289 (3)	-0.0249 (3)
Cl1	0.0963 (6)	0.0616 (4)	0.0962 (5)	-0.0036 (4)	-0.0078 (4)	0.0053 (4)
01	0.0552 (9)	0.0614 (9)	0.0517 (9)	-0.0035 (7)	-0.0041 (7)	-0.0128 (7)
N1	0.0469 (9)	0.0392 (8)	0.0447 (9)	0.0005 (7)	-0.0070 (8)	-0.0106 (7)
N2	0.0481 (9)	0.0393 (9)	0.0529 (10)	-0.0012 (7)	-0.0168 (8)	-0.0152 (8)
C8	0.0391 (10)	0.0428 (11)	0.0480 (11)	-0.0037 (8)	-0.0078 (9)	-0.0122 (9)
C1	0.0418 (11)	0.0433 (11)	0.0541 (12)	-0.0008 (9)	-0.0097 (9)	-0.0197 (9)
C7	0.0428 (11)	0.0468 (11)	0.0532 (13)	-0.0074 (9)	-0.0068 (9)	-0.0181 (10)
C6	0.0427 (11)	0.0502 (12)	0.0567 (13)	-0.0010 (9)	-0.0083 (10)	-0.0210 (10)
C10	0.0497 (12)	0.0441 (11)	0.0553 (12)	-0.0084 (9)	-0.0111 (10)	-0.0149 (9)
C9	0.0539 (12)	0.0463 (11)	0.0630 (13)	-0.0027 (10)	-0.0180 (11)	-0.0217 (10)
C16	0.0556 (13)	0.0414 (11)	0.0614 (13)	0.0017 (9)	-0.0216 (11)	-0.0149 (10)
C17	0.0731 (15)	0.0413 (11)	0.0611 (14)	-0.0108 (11)	-0.0246 (12)	-0.0147 (10)
C5	0.0633 (15)	0.0476 (12)	0.0619 (14)	-0.0004 (10)	-0.0125 (11)	-0.0180 (11)
C15	0.0576 (14)	0.0784 (17)	0.0654 (15)	-0.0165 (12)	-0.0158 (12)	-0.0224 (13)
C4	0.0574 (15)	0.0530 (14)	0.0874 (18)	0.0118 (12)	-0.0208 (14)	-0.0226 (13)
C2	0.0465 (12)	0.0501 (13)	0.0797 (16)	-0.0031 (10)	-0.0024 (11)	-0.0187 (12)
C3	0.0410 (13)	0.0644 (16)	0.106 (2)	0.0039 (11)	-0.0051 (13)	-0.0322 (16)
C22	0.0767 (18)	0.0659 (16)	0.0727 (17)	-0.0243 (14)	-0.0109 (14)	-0.0150 (13)
C11	0.0800 (18)	0.0793 (18)	0.0590 (15)	-0.0218 (15)	-0.0077 (13)	-0.0176 (13)
C18	0.110 (2)	0.0598 (15)	0.0720 (18)	-0.0091 (15)	-0.0449 (16)	-0.0109 (13)
C14	0.0605 (17)	0.101 (2)	0.108 (2)	-0.0165 (15)	-0.0323 (17)	-0.0332 (19)
C21	0.128 (3)	0.087 (2)	0.086 (2)	-0.058 (2)	0.019 (2)	-0.0300 (19)
C19	0.203 (4)	0.071 (2)	0.069 (2)	-0.033 (3)	-0.059 (3)	-0.0023 (17)
C20	0.221 (5)	0.078 (2)	0.060 (2)	-0.074 (3)	-0.007 (3)	-0.0133 (17)
C12	0.079 (2)	0.097 (2)	0.095 (2)	-0.0399 (18)	0.0271 (18)	-0.0401 (18)

C13	0.0533 (16)	0.085 (2)	0.144 (3)	-0.0193 (14)	-0.009 (2)	-0.051 (2)
Geometric paran	neters (Å, °)					
S1—C8		1.672 (2)	C5	—C4		1.375 (3)
Cl1—C5		1.731 (3)	C1	5—C14		1.382 (4)
01		1 208 (3)	C1	5—H15		0.9300
N1—C7		1 392 (2)	C4			1 365 (3)
N1-C8		1.402 (2)	C4	—H4		0.9300
N1—H1		0.8600	C2	C3		1.373 (3)
N2—C8		1.326 (2)	C2	—H2		0.9300
N2—C9		1.470 (3)	C3	—Н3		0.9300
N2—C16		1.471 (2)	C2	2—C21		1.375 (4)
C1—C6		1.384 (3)	C2	2—H22		0.9300
C1—C2		1.386 (3)	C1	1—C12		1.388 (4)
C1—C7		1.488 (3)	C1	1—H11		0.9300
C6—C5		1.383 (3)	C1	8—C19		1.377 (4)
С6—Н6		0.9300	C1	8—H18		0.9300
C10-C15		1.374 (3)	C1	4—C13		1.359 (4)
C10-C11		1.382 (3)	C1	4—H14		0.9300
С10—С9		1.508 (3)	C2	1—C20		1.356 (5)
С9—Н9А		0.9700	C2	1—Н21		0.9300
С9—Н9В		0.9700	C1	9—C20		1.371 (6)
C16—C17		1.507 (3)	C1	9—Н19		0.9300
C16—H16A		0.9700	C2	0—H20		0.9300
C16—H16B		0.9700	C1	2—C13		1.357 (5)
C17—C22		1.372 (3)	C1	2—Н12		0.9300
C17—C18		1.378 (3)	C1	3—Н13		0.9300
C7—N1—C8		122.70 (17)	C1	0—C15—C14		120.6 (2)
C7—N1—H1		118.6	C1	0—C15—H15		119.7
C8—N1—H1		118.6	C1	4—С15—Н15		119.7
C8—N2—C9		123.98 (17)	C3	C4C5		119.2 (2)
C8—N2—C16		120.06 (17)	C3	—С4—Н4		120.4
C9—N2—C16		115.01 (16)	C5	—С4—Н4		120.4
N2—C8—N1		117.33 (17)	C3			119.8 (2)
N2—C8—S1		124.47 (15)	C3	—С2—Н2		120.1
N1—C8—S1		118.19 (14)	C1	—С2—Н2		120.1
C6—C1—C2		119.73 (19)	C4	—C3—C2		121.1 (2)
C6—C1—C7		122.07 (18)	C4	—С3—Н3		119.5
C2—C1—C7		118.2 (2)	C2	—С3—Н3		119.5
O1—C7—N1		122.69 (19)	C1	7—C22—C21		120.4 (3)
O1—C7—C1		122.22 (18)	C1	7—С22—Н22		119.8
N1—C7—C1		115.04 (18)	C2	1—С22—Н22		119.8
C5—C6—C1		119.1 (2)	C1	0—C11—C12		120.7 (3)
С5—С6—Н6		120.4	C1	0—C11—H11		119.7
С1—С6—Н6		120.4	C1	2—С11—Н11		119.7
C15—C10—C11		118.3 (2)	C1	9—C18—C17		120.4 (3)
С15—С10—С9		121.0 (2)	C1	9—C18—H18		119.8
С11—С10—С9		120.7 (2)	C1	7—С18—Н18		119.8

N2—C9—C10	109 86 (16)	C13—C14—C15	120 4 (3)		
N2—C9—H9A	109.7	C13—C14—H14	119.8		
С10—С9—Н9А	109.7	C15—C14—H14	119.8		
N2—C9—H9B	109.7	C20—C21—C22	120.5 (3)		
С10—С9—Н9В	109.7	C20—C21—H21	119.7		
Н9А—С9—Н9В	108.2	C22—C21—H21	119.7		
N2—C16—C17	112.77 (16)	C20—C19—C18	119.9 (3)		
N2—C16—H16A	109.0	C20—C19—H19	120.0		
C17—C16—H16A	109.0	С18—С19—Н19	120.0		
N2—C16—H16B	109.0	C21—C20—C19	119.9 (3)		
С17—С16—Н16В	109.0	С21—С20—Н20	120.1		
H16A—C16—H16B	107.8	С19—С20—Н20	120.1		
C22—C17—C18	118.9 (2)	C13—C12—C11	119.9 (3)		
C22—C17—C16	121.5 (2)	С13—С12—Н12	120.1		
C18—C17—C16	119.5 (2)	C11—C12—H12	120.1		
C4—C5—C6	121.1 (2)	C12—C13—C14	120.2 (3)		
C4—C5—Cl1	119.47 (18)	С12—С13—Н13	119.9		
C6—C5—C11	119.44 (18)	C14—C13—H13	119.9		
C9—N2—C8—N1	26.1 (3)	C1—C6—C5—Cl1	-178.21 (16)		
C16—N2—C8—N1	-165.58 (17)	C11—C10—C15—C14	1.5 (4)		
C9—N2—C8—S1	-154.11 (16)	C9—C10—C15—C14	-176.4 (2)		
C16—N2—C8—S1	14.2 (3)	C6—C5—C4—C3	-1.0 (4)		
C7—N1—C8—N2	52.4 (3)	Cl1—C5—C4—C3	179.7 (2)		
C7—N1—C8—S1	-127.36 (18)	C6—C1—C2—C3	-0.4 (3)		
C8—N1—C7—O1	-12.5 (3)	C7—C1—C2—C3	-178.5 (2)		
C8—N1—C7—C1	164.86 (17)	C5—C4—C3—C2	-1.2 (4)		
C6—C1—C7—O1	-140.7 (2)	C1—C2—C3—C4	1.9 (4)		
C2-C1-C7-01	37.3 (3)	C18—C17—C22—C21	0.5 (4)		
C6—C1—C7—N1	41.9 (3)	C16—C17—C22—C21	-174.9 (2)		
C2—C1—C7—N1	-140.1 (2)	C15-C10-C11-C12	-1.1 (4)		
C2—C1—C6—C5	-1.7 (3)	C9—C10—C11—C12	176.8 (2)		
C7—C1—C6—C5	176.25 (19)	C22-C17-C18-C19	-1.0 (4)		
C8—N2—C9—C10	110.5 (2)	C16-C17-C18-C19	174.5 (2)		
C16—N2—C9—C10	-58.3 (2)	C10-C15-C14-C13	0.0 (4)		
C15-C10-C9-N2	119.3 (2)	C17—C22—C21—C20	0.5 (4)		
C11—C10—C9—N2	-58.6 (3)	C17—C18—C19—C20	0.5 (5)		
C8—N2—C16—C17	127.7 (2)	C22—C21—C20—C19	-1.1 (5)		
C9—N2—C16—C17	-63.0 (2)	C18—C19—C20—C21	0.6 (5)		
N2-C16-C17-C22	-47.3 (3)	C10-C11-C12-C13	-0.7 (4)		
N2-C16-C17-C18	137.3 (2)	C11-C12-C13-C14	2.3 (5)		
C1—C6—C5—C4	2.5 (3)	C15-C14-C13-C12	-1.9 (5)		
Hydrogen-bond geometry (Å, °)					

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C16—H16A…S1	0.97	2.51	3.029 (3)	113
N1—H1···S1 ⁱ	0.86	2.74	3.410 (2)	136
C15—H15…O1 ⁱⁱ	0.93	2.50	3.421 (3)	170

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y+1, -z.

